/	345 7075	IREL (Inc (Formerly INDIAN)	(इंडिया) लिमिटेड dia) Limited RARE EARTHS LIMITED) म – परमाणु ऊर्जा विभाग) aking – Dent, of Atomic Et	206811-257890 to 257895 फैक्स/FAX : 06811 - 257988 <i>e-mail:</i> head-ireo@irel.co.in <i>website:</i> www.irel.co.in
	र रही	सा सैंण्ड्स कांप्लेक्स. माटिखलो (डाक) तुर (गंजाम), ओडिशा- 761045, भारत	Orissa Sands Complex, M Chatrapur (Ganjam), Odisl	fatikhalo (P.O)
		ISO 9001: 2015, ISO 14001: 20	15 & OHSAS 18001 · 2007 C	ompany
		130 9001. 2013, 130 14001. 20		Registered Post
	TS/ENVR/01/ 277	0 A	S	eptember 25, 2020
				ä
2	To The Member Secretary State Pollution Control Dept. of Forest & Envir Government of Odisha Paribesh Bhawan, A- Nilakantha Nagar, Bh	Board, Odisha, onment, , 18,		
	Sub : Environmental S	tatement of OSCOM & F ancial year 2019-20.	Rare Earth Extraction P	lant (formerly named
	Dear Sir,			
	We are enclosing her 2019-20 for your inform	ewith two copies of Env nation please.	ironmental Statement	report for the financial year
	Thanking you.	4		
0			For IR	EL (India) Limited.
	Dept. of Fore Government Regional Offic	Control Board, Odisha st & Environment,	: A copy of the for informatio	same report is enclosed n please.
	: UNIT HEAD	OSCOM)'s file/TS.		
	Corporate Office: Plot	: नं. 1207, सिद्धि विनायक मंदिर वे no: 1207, Opp. Siddhi Vinayak 30. 2421 1851 2422023() 24382(' सामने, वीर सावरकर मार्ग. प्रभा Temple, Veer Savarkar Marg.)42, Fax: +91-22-24220236.	Prabhadevi, Mumbai-400 028

Q9116318E9116323 H9116337

ISO:9001:2015 ISO:14001:2015 OHSAS:18001:2007

For the year 2019-20

September2020

IREL (India) Limited Orissa Sands Complex Matikhalo, Chatrapur, Odisha-761 045

FORM - V" (See Rule 14)

Environmental Statement for the financial year ending the 31st March 2020.

<u> PART - A</u>

(i)Name and address of the owner	r/Agent: A.J.Janarthanan
Occupier of the industry	CGM & Head, OSCOM
Operation or process.	IREL (India) Limited.
	Orissa Sands Complex
	Matikhalo,Chatrapur,
	DistGanjam (Odisha)
	PIN - 761 045

(ii) Industry category

: Major scale Industry

(iii)Production capacity

: <u>Product Quantity (t/month)</u>

<u>OSCOM</u>

As per consent order no 636/18-19 dated 01.03.2 Beach sand mineral products (Ilmenite, Rutile, Zi Sillimanite, Garnet ,Monazite)	•
Zirconia/Stabilised Zirconia/zirconium chemicals	: 0.29
As per consent order no 2794 dated 03.03.2018, <u>Rare Earth Extraction Plant (REEP)(t/ Mon)</u> Tri-Sodium Phosphate Ammonium Di-uranate (Nuclear grade)	: 1125
Thorium oxalate Thorium nitrate/oxide	: 166.66 : 12.5

Rare Earth Chloride : 864.58

(iv) Year of establishment:

Dredge & Wet upgradation plant (D&WUP)-	October 1986
Mineral Separation Plant (MSP)	-	October 1986
*Thorium Plant (TP)	-	February 1992
(*: Merged with REEP)		
Zirconia semi Pilot Plant (ZPP)	-	December 2000
Rare Earths Extraction Plant		
(Earlier named MoPP)	-	August 2013

(v) Date of last environmental		
Statement submitted	:	November30, 2019
		Vide our letter
		No.TS/ENVR/01/

PART - B

Water and Raw Material Consumption:

(1) Water consumption(average),m³/day :

	Mining*	MSP	REEP	BOILER	ZPP**			
Process	105	1241	157.21	245	Nil			
Cooling			45					
Domestic	116.0	(for OSCOM & REEP) and						
	392.0	(for IREL Housing Colony)						

About 90% of the water, after slurry transportation, is taken back to the Pond (in mining area). Thus, the actual water consumed is worked out to be 10% of the total quantity during slurry transportation from mining area to MSP.

******* : ZPP was not under operation during the year 2019-20.

	Wa	ter consumption per	r unit of products
	1	2	3
	Nature of Products	During the year	During the year
		2018-19	2019-20
(1)	Per ton of heavy	$1.49m^{3}$	$1.21m^{3}$
	minerals(MSP) (Ilmenite,		
	Rutile, Zircon, Monazite,		
	sillimanite, Garnet)		
(2)	Per ton of total products of	3.80 m^3	3.28 m^3
	REEP i.e. Thorium nitrate,		
	Rare earths chloride, Tri-		
	Sodium phosphate		
(3)	Per Kg of Zirconia/Zirconium	Nil	NIL
	basic Sulphate (intermediate		
	product)		

Note:

- i. Water consumption per unit of products has been assessed on the basis of total production of heavy mineral combined product and fresh water consumed.
- ii. The water consumption for production of the total heavy mineral production in MSP is nearly same to the previous year.
- iii. A part of water was recycled (1266@m³/day) from Pond No.1 for MSP process.
- iv. Water consumption per unit of products has been assessed based on the total production of REEP and fresh water consumed.

(2) <u>Raw Material Consumption</u>: i. For OSCOM operation :

S1.		Raw material consumptio						
No.	Nature	during the year 2018- 19						
[DWUP		I	•				
1.1	Raw sand, t	(for production of upgraded heavy minerals consisting of ilmenite, rutile, zircon, monazites sillimanite & garnet.	7.00	6.57				
2	MSP		1					
2.1	Furnace oil,L	-do-	19.29	16.00				
2.2	Sodium chloride, Kg	(for production of sillimanite)	1.85	1.43				
2.3	Soda ash,Kg	-do-	1.24	0.96				
2.4	Sodium silicate,Kg	-do-	0.38	0.33				
2.5	Oleic acid,Kg	-do-	1.02	0.89				
2	ZPP (Raw material consumption per Kg of product output)							
3.1	Zircon frit, Kg (avg. ZrO ₂ :60%)	(for production of zirconia/equivalent products)	*Nil	*Ni				
3.2	Hydrochloric Acid, Kg (~30% conc),	-do-	*Nil	*Nil				
3.3	Sulphuric acid, L (~98% conc.),	-do-	*Nil	*Ni				
3.4	Ammonia, Kg	-do-	*Nil	*Ni				
3.5	Magnesium nitrate, Kg	-do-	*Nil	*Ni				
3.6	Sodium hydroxide Flakes, Kg,	-do-	*Nil	*Ni				
3.7	High speed diesel (HSD), L	-do-	*Nil	*Ni				
3.8	Yttrium oxide, Kg	-do-	*Nil	*Ni				
3.9	Hydrated lime, Kg	(for effluent neutralization.)	*Nil	*Ni				

Note:

a. In the case of consumption of raw materials in DWUP & MSP (such as raw sand & furnace oil respectively) given is for the production of one ton heavy minerals.

- b. The consumption of input chemicals like furnace oil, sodium chloride, sodium silicate, oleic acid etc.in MSP are less than previous year.
- c. Number of day's plant operated during the year **2019-20**:

Mining: 356 days, MSP: 356 days, ZPP : NIL

ii. For Rare Earth Extraction Plant operation:

Sl. No.	Raw material consumption per ton of product output									
	Nature of raw Material		during the year 2018-19	during the year 2019-20						
3	Rare Earth Extraction P		· ·							
1.1	Monazite	For processing & production total products in REEP	0.45	0.459						
1.2	Hydrochloric acid (~30% w/w), L	For processing & production total products in REEP	0.56	0.742						
1.3	Caustic lye, t	For processing & production total products in REEP	0.55	0.82						
1.4	Barium chloride, Kg	For production of Rare	15.2	17.1						
1.5	Sodium sulphide, Kg	earths chloride.	14.5	9.4						
1.6	Magnesium sulphate, Kg		17.0	16.82						
1.7	Thorium oxalate, t	For production of	3.15	3.2						
1.8	Soda ash, t	Thorium nitrate	1.52	1.4						
1.9	Hydrogen peroxide, t		0.028	0.029						
1.10	Petrofin, Kg	For production of Thorium nitrate, Thorium oxalate& Ammonium di- uranate(ADU)	9.9	4.73						
1.11	Nitric acid, t	For production of	3.96	4.91						
1.12	Alamine, kg	Thorium oxalate&ADU	4.83	0.09						
1.13	Tri-n-butyl phosphate (TBP), Kg	For production of Thorium nitrate, &ADU	20.9	0.13						
1.14	Ammonia, t	For production of ADU	0.41	0.23						

Sl. No.	1	er ton of product output			
	Nature of raw Material	during the year 2018-19	during the year 2019-20		
4.	Boiler (Raw material consum	mption per ton of steam outp	ut)		
4.1	Coal,t	For steam generation	0.26	0.23	
4.2	Furnace oil, Kg		Nil	Nil	
4.3	Sodium hydroxide, Kg	For regeneration in DM Plant	3.11	3.2	
4.4	Hydrochloric acid (~30% w/w), L	For regeneration in DM Plant	2.54	2.58	

Note:

- a. During the year 2019-20, 5150 ton of Monazite was processed and products e.g. 5845 ton of Tri-sodium phosphate, 5048 ton of Rare Earths Chloride, 1045 ton Thorium oxalate & 6.01 ton of Nuclear Grade (NGADU) and 4.2 ton Thorium nitrate products were produced.
- b. Consumption norm of the raw materials/chemicals, such as Monazite, Hydrochloric acid, Barium sulphate, caustic lye, used were slightly higher than that of the previous year. However, for chemicals such as Magnesium sulphate, Sodium sulphide, Thorium oxalate, Soda ash, Petrofin, Nitric acid, Alamine, TBP, Ammonia were marginally lower.
- c. The coal fired Boiler was operated for meeting the steam requirement of REEP.
- d. Number of days plant operated during the year **2019-20**:

REEP (earlier named MoPP): 356 days, Boiler: 355days.

<u> PART - C</u>

Pollution discharged to environment/unit of out put

Parameters as specified in the Consent issued

Pollutants	Quantity of pollutants,	Percentage of	
	Pollutants discharged	variation from	
		prescribed standards	
		with reasons	
(a) Water			
MSP	1241 m ³ /day	Nil*(all parameter	
ZPP	Nil	are with in limit)	
Boiler & DM Plant	$9.6 \text{ m}^3/\text{day}$		
REEP(earlier named	$15.44 \text{ m}^3/\text{day}$	Nil#	
MoPP)			

Note:

- i. The volume of waste water / treated effluents discharged are below 6400 m³/day for OSCOM Plants.(as specified in consent)
- ii: The volume of treated effluents discharged are below 30 m³/day for Rare Earth Extraction Plant.(as specified in consent)
- Waste water containing slime, generated in MSP, was discharged to our Pond No.1.
- iv. The effluent generated in Boiler & DMwere neutralized and discharged to Pond No.2.
- v. The non-nitrate effluent (5500m³), generated in REEP, were neutralized, chemically treated, filtered and reused at MSP. The cake after filtration was stored in underground RCC trenches, as approved by AERB.
- vi. Nitrate bearing effluent (38**m**³) was stored in impervious storage ponds under shed. After drying, the sodium nitrate crystals were stored in RCC trenches along with low level radioactive wastes.
- vii. The qualities of effluents discharged in Pond No.1 & 2 are given Under "Effluent quality".

EFFLUENT QUALITY(2019-2020) :

The waste water/ treated effluent quality analysis for two discharge outlets i.e. Pond No.1 & 2 was taken up by M/s Centre for Envotech & Management Consultancy Pvt. Ltd., Bhubaneswar, a NABL Accredited & MoEF & CC Authorized Laboratory.

Total 24 numbers of samples were analyzed (12 for each outlet). The range of values obtained for different parameters on half-yearly basis for are given below:

Report no. - CEMC/IREL/WW1

Date-16.05.2020

EFFLUENT WATER QUALITY MONITORING TEST REPORT

Name & Address of the Client

Sampling Period Sampling by Sample Description Sample Quantity : M/s. Indian Rare Earths Limited, Matikhala, Chatrapur, Ganjam, Odisha : April' 2019 to March' 2020 : Mr.S Pradhan & Mr. R Das : Treated Effluent Quality (Pond-1)

: 1 reated E muent Quanty (Pond-1) : 2.0 Ltrs

ANALYSIS RESULT

SI. No	Parameter	Unit	Permissib le Norms by CPCB	Apr	May	June	July	Aug	Sept	Max	Min	Avg	SD
1	pH Value		5.5 to 9.0	8.03	7.92	7.84	7.51	8.01	7.93	8.03	7.51	7.87	0.19
2	Temp#	°C		32.4	32.1	32.8	32.6	32.1	29.9	32.8	29.9	31.98	1.06
3	Turbidity#	NTU		9	11	7	12	11	10	12	7	10.00	1.79
4	Colour#	Hazen	(7	6	5	7	6	8	8	5	6.50	1.05
5	Alkalinity#	m g/1		82	94	80	90	86	96	96	80	88.00	6.45
6	TDS	m g/1		270.6	289.3	260.7	278.5	247.8	360.3	360.3	247.8	284.5	39.78
7	TSS	m g/1	100	11.6	10.9	11.3	12.6	13.8	16.1	16.1	10.9	12.72	1.96
8	O&G	m g/1	20	<5	<5	<5	<5	<5	<5	0	0	0	0
9	BOD	m g/1	100	3.4	3.2	3.0	3.4	3.2	3.6	3.6	3	3.30	0.21
10	COD	m g/1	250	20	22	24	24	22	26	26	20	23.00	2.10
11	DO	m g/1		3.4	3.6	5.2	3.4	3.4	5.0	5.2	3.4	4.00	0.86
12	Chloride#	m g/1	()	26.8	28.9	27.3	27.6	25.9	35.6	35.6	25.9	28.68	3.53
13	Sulphate#	m g/1		9.5	10.8	9.6	10.3	9.6	13.5	13.5	9.5	10.55	1.53
14	Fluoride#	m g/1	15.0	0.11	0.12	0.12	0.11	0.11	0.14	0.14	0.11	0.12	0.01
15	TH#	m g/1		82	94	90	90	84	106	106	82	91.00	8.56
16	Calcium#	m g/1		25.25	28.05	25.65	26.45	24.85	30.46	30.46	24.85	26.79	2.13
17	Magnesium#	m g/1		4.62	5.83	6.32	5.83	5.34	7.29	7.29	4.62	5.87	0.90
18	Sodium #	m g/1		25.9	29.7	25.3	27.9	25.5	32.9	32.9	25.3	27.87	2.99
19	Potassium#	m g/1		9.1	10.9	7.5	9.8	9.2	10.1	10.9	7.5	9.43	1.15
20	TN#	m g/1		2.6	3.1	2.1	3.0	2.8	4.1	4.1	2.1	2.95	0.67
21	Diss PO ₄	m g/1		0.31	0.38	0.26	0.34	0.31	0.36	0.38	0.26	0.33	0.04
22	Iron#	m g/1	3.0	0.31	0.36	0.34	0.33	0.30	0.41	0.41	0.3	0.34	0.04
23	Copper#	m g/1	3.0	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	NA	NA	NA	NA
24	Cadmium#	m g/1	2.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	NA	NA
25	Lead#	m g/1	2.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	NA	NA
26	Zinc#	m g/1	15.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA
27	TCr#	m g/1	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA
28	Cr+6#	m g/1	1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA
29	C ₆ H ₅ OH#	m g/1	5.0	<0.00 1	<0.00 1	<0.00 1	<0.00 1	< 0.001	< 0.001	NA	NA	NA	NA
30	RFC#	m g/1	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
31	TKN#	m g/1	100	0.98	0.99	1.06	0.98	0.94	1.92	1.92	0.94	1.15	0.38
32	Free NH ₃ #	m g/1	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey. Regd. Office: 1st Floor, N-5/305, IRC village, Navapalli, Bhubaneswar-751015, Odisha, India, Mobile: 9861032826

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344. Laboratory At: Plot No. 800/1274, Johal, Pahal, Bhubaneswar-752101,

E-mail: <u>cemclab@yahoo.in</u>, Mobile: 9937631956, 8895177314

CENTRE FOR ENVOTECH AND

An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, OCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF (Wildliffe) & CWLW,Odisha Entitled in CIDC (established by the Planning Commission Govt. of India), NABL MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.

							-						
33	Arsenic#	m g/1	0.2	<0.00 l	<0.00 1	<0.00 l	<0.00 1	< 0.001	< 0.001	NA	NA	NA	NA
34	Mercury#	m g/1	0.001	<0.00 1	<0.00 1	<0.00 1	<0.00 1	< 0.001	< 0.001	NA	NA	NA	NA
35	Selenium#	m g/1	0.05	<0.00 l	<0.00 1	<0.00 1	<0.00 1	< 0.001	< 0.001	NA	NA	NA	NA
36	Nickel#	m g/1	5.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	NA	NA
37	Cyanide#	m g/1	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
38	Sulphides#	m g/1	5.0	0.05	0.37	0.2	0.36	0.32	0.31	0.37	0.05	0.27	0.12
39	Manganese#	m g/1	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA
40	Vanadium#	m g/1	0.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	NA	NA
41	NO ₃ #	m g/1	20	0.45	0.49	1.10	0.46	0.49	1.74	1.74	0.45	0.79	0.53
42	Bio-assay Test#		90% Survival of Fish after 96 hrs in 100% Effluent	91%	92%	91%	91%	92%	91%	92%	91%	91%	0.01
43	α- emitters*	Bq/1	3.7	BDL	0.26	0.12	0.18	0.16	0.18	0.26	0.12	0.18	0.05
44	β- emitters*	Bq/l	37	BDL	0.49	0.11	0.44	0.39	0.31	0.49	0.11	0.35	0.15

SI. No	Parameter	Unit	Permissible Norms by CPCB	Oct	Nov	Dec	Jan	Feb	Mar	Max	Min	Avg	SD
1	pH Value	122	5.5 to 9.0	7.58	7.81	7.36	7.59	7.42	7.34	7.81	7.34	7.52	0.18
2	Temp	°C		29.2	28.4	26.7	26.2	27.5	28.7	29.2	26.2	27.78	1.18
3	Turbidity	NTU		12	14	11	9	11	7	14	7	10.67	2.42
4	Colour	Haze n		11	12	10	9	10	5	12	5	9.50	2.43
5	Alkalinity	mg/l		82	88	76	78	132	90	132	76	91.00	20.81
6	TDS	mg/l		261.2	284.6	228.9	233.4	571.4	258.7	571.4	228.9	306.3 7	131.4 2
7	TSS	mg/l	100	16.1	12.3	10.3	11.6	13.9	10.2	16.1	10.2	12.40	2.27
8	0&G	mg/l	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
9	BOD	mg/l	100	3.0	2.6	2.2	2.4	2.6	3.2	3.2	2.2	2.67	0.37
10	COD	mg/l	250	18	20	16	18	22	22	22	16	19.33	2.42
11	DO	mg/l		5.8	5.4	5.6	5.6	5.4	5.4	5.8	5.4	5.53	0.16
12	Chloride	mg/l		23.9	27.6	21.9	29.3	48.9	31.3	48.9	21.9	30.48	9.66
13	Sulphate	mg/l	122	11.4	12.8	9.4	9.9	25.6	10.9	25.6	9.4	13.33	6.13
14	Fluoride	mg/l	15.0	0.11	0.12	0.11	0.12	0.17	0.11	0.17	0.11	0.12	0.02
15	TH	mg/l		80	86	74	92	138	102	138	74	95.33	23.04
16	Calcium	mg/l		22.04	24.04	21.64	26.05	38.48	28.06	38.48	21.64	26.72	6.25
17	Magnesium	mg/l		6.08	6.32	4.86	6.56	10.21	7.78	10.21	4.86	6.97	1.84
18	Sodium	mg/l		26.4	28.7	23.4	26.1	45.8	29.3	45.8	23.4	29.95	8.04
19	Potassium	mg/l		8.6	9.2	7.5	7.9	23.7	10.2	23.7	7.5	11.18	6.21
20	TN#	mg/l		2.9	3.1	3.0	3.8	4.9	2.5	4.9	2.5	3.37	0.86
21	Diss PO ₄	mg/l		0.22	0.25	0.21	0.23	0.48	0.29	0.48	0.21	0.28	0.10
22	Iron	mg/l	3.0	0.32	0.34	0.28	0.31	0.41	0.38	0.41	0.28	0.34	0.05
23	Copper	mg/l	3.0	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
24	Cadmium	mg/l	2.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
25	Lead	mg/l	2.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey. Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344.

50	CEN
	MA
	An ISO 9
	Accredit
	-

NTRE FOR ENVOTECH AND NAGEMENT CONSULTANCY PVT. LTD. 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha ted by NABET, QCI for EIA Studies as 'A' Category Consultant Organization.

EMC EMC Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in CIDC (established by the Planning Commission Govt. of India), NABL

MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.

_													
26	Zinc	mg/l	15.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
27	TCr	mg/l	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
28	Cr ⁺⁶	mg/l	1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
29	C ₆ H ₅ OH	mg/l	5.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.00	< 0.00	< 0.00
20	DECH		1.0	ND	110	ND	ND	NID	ND	< 0.001	1	I	ND
30	RFC#	mg/l	1.0	ND	ND								
31	TKN#	mg/l	100	1.31	1.36	1.19	1.25	2.31	1.19	2.31	1.19	1.44	0.43
32	Free NH ₃ #	mg/l	5.0	ND	ND	ND							
33	Arsenic	mg/l	0.2	< 0.001	< 0.001	<0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.00 1	< 0.00	<0.00 1
34	Mercury#	mg/l	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.00 1	<0.00 1	<0.00 1
35	Selenium#	mg/l	0.05	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.00 1	<0.00 1	<0.00 1
36	Nickel	mg/l	5.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
37	Cyanide	mg/l	0.02	ND	ND	ND							
38	Sulphides#	mg/l	5.0	0.26	0.28	0.22	0.24	0.35	0.17	0.35	0.17	0.25	0.06
39	Manganese	mg/l	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
40	Vanadium#	mg/l	0.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
41	NO ₃	mg/l	20	1.51	1.53	1.37	1.44	2.13	1.38	2.13	1.37	1.56	0.29
42	Bio-assay Test#		90% Survival of Fish after 96 hrs in 100% Effluent	93%	93%	94%	92%	91%	92%	0.94	0.91	0.93	0.01
43	α- emitters*	Bq/l	3.7	0.18	0.13	0.15	0.08	0.07	0.09	0.18	0.07	0.12	0.04
44	β- emitters*	Bq/l	37	0.49	0.42	0.27	0.66	0.42	0.27	0.66	0.27	0.42	0.15

N.B: ND-Not Detectable, MPN-Most Probable Number, NA- Not Applicable

*Sample Tested By Health Physics Unit of BARC, OSCOM #- Analyzed by Eko Pro Engineers, Gaziabad, Certificate No.-T-1418

MRON

Authorized Signatory Notes:

8

- The result given above related to the tested sample, as received, The customer asked for the above test only. This Test Report shall not be reproduced wholly of a part without prior written consent of the laboratory. >
- > The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.
- Þ This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India, Mobile: 9861032826

E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344.

CENTRE FOR ENVOTECH AND MANAGEMENT CONSULTANCY PVT. LTD. An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) & CWLW, Odisha

(E)CEMC

Enlisted in CIDC (established by the Planning Commission Govt. of India), NABL MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.

Report no. - CEMC/IREL/WW2

Date. 16.11.2019

EFFLUENT WATER QUALITY MONITORING TEST REPORT

Name & Address of the Client

Sampling Period Sampling by **Sample Description** Sample Quantity

: M/s. Indian Rare Earths Limited, Matikhala, Chatrapur, Ganjam, Odisha

- : April' 2019 to March' 2020
- : Mr.S Pradhan & Mr. R Das
- : Pond-2 (RPP Pit, Inlet)
- : 2.0 Ltrs

ANALYSIS RESULT

SI. No	Parameter	Unit	Permissib le Norms by CPCB	Apr	May	June	July	Aug	Sept	Max	Min	Avg	SD
1	pH Value		5.5 to 9.0	8.08	7.76	7.75	7.62	7.63	7.98	8.08	7.62	7.80	0.19
2	Temp.#	°C		31.9	31.5	32.4	32.7	31.9	29.7	32.7	29.7	31.68	1.06
3	Turbidity#	NTU		8	9	9	11	16	9	16	8	10.33	2.94
4	Colour #	Hazen	1993	6	5	5	6	8	6	8	5	6.00	1.10
5	Alkalinity#	m g/1		90	92	86	88	96	82	96	82	89.00	4.86
6	TDS	m g/1		278.4	280.5	273.6	270.3	281.2	230.2	281.2	230.2	269.03	19.48
7	TSS	m g/1	100	10.9	10.6	10.9	11.8	23.4	11.3	23.4	10.6	13.15	5.04
8	O&G	m g/1	20	<5	<5	<5	<5	<5	<5	NA	NA	NA	NA
9	BOD	m g/1	100	3.2	3.0	3.1	3.6	3.2	3.2	3.6	3	3.22	0.20
10	COD	m g/1	250	22	20	22	24	20	18	24	18	21.00	2.10
11	DO	m g/1		3.8	3.6	5.4	3.2	3.6	5.6	5.6	3.2	4.20	1.03
12	Chloride#	m g/1	1220	28.1	28.6	28.6	27.3	29.9	22.9	29.9	22.9	27.57	2.44
13	Sulphate#	m g/1		9.9	10.1	10.2	10.0	12.6	8.4	12.6	8.4	10.20	1.35
14	Fluoride#	m g/1	15.0	0.09	0.09	0.1	0.09	0.09	0.1	0.1	0.09	0.09	0.01
15	TH#	m g/1		90	90	92	88	96	84	96	84	90.00	4.00
16	Calcium#	m g/1		26.85	26.85	25.65	25.65	28.86	24.85	28.86	24.85	26.45	1.41
17	Magnesium#	m g/1		5.59	5.59	6.8	5.83	5.83	5.35	6.8	5.35	5.83	0.51
18	Sodium #	m g/1		27.8	27.9	27.1	26.4	28.2	25.2	28.2	25.2	27.10	1.13
19	Potassium#	m g/1		10.2	10.3	7.9	9.1	9.4	7.3	10.3	7.3	9.03	1.22
20	TN#	m g/1		2.8	2.8	2.2	2.7	2.9	2.1	2.9	2.1	2.58	0.34
21	Diss PO ₄	m g/1		0.36	0.35	0.29	0.32	0.34	0.21	0.36	0.21	0.31	0.06
22	Iron#	m g/1	3.0	0.35	0.34	0.38	0.31	0.35	0.32	0.38	0.31	0.34	0.02
23	Copper#	m g/1	3.0	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	NA	NA	NA	NA
24	Cadmium#	m g/1	2.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	NA	NA
25	Lead#	m g/1	2.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	NA	NA
26	Zinc#	m g/1	15.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA
27	TCr#	m g/1	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA
28	Cr+6#	m g/1	1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA	NA
29	C ₆ H ₅ OH#	m g/1	5.0	<0.00 1	<0.00 1	<0.00 1	< 0.001	<0.00 1	< 0.001	NA	NA	NA	NA
30	RFC#	m g/1	1.0	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
31	TKN#	m g/1	100	0.99	0.95	1.12	0.94	0.91	1.01	1.12	0.91	0.99	0.07
32	Free NH ₃ #	m g/1	5.0	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
33	Arsenic#	m g/1	0.2	< 0.00	< 0.00	< 0.00	< 0.001	< 0.00	< 0.001	NA	NA	NA	NA

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey. Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India, Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344.

NA

NA NA 0.07 NA NA 0.35

0.01

0.27

0.08

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¢	CEMC Empa Enlist	0 9001-2008 dited by NA nelled with ed in CIDC	SEMEN 8 & OHSAS 1800 ABET, QCI for El PCCF(Wildlife) (established by of India, Recog	01:2007 C A Studies &CWLW,0 the Plann	ertified Co as 'A' Ca Odisha ing Comr	ompany, E itegory Co nission G	Empanelled onsultant Or ovt. of India	with OCC rganization), NABL	L, ORSAC an n.	d SPCB of		Odisha
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	1	1		1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	Mercury#	m g/l	0.001	<0.00 l	<0.00 1	<0.00 l	< 0.001	<0.00 1	< 0.001	NA	NA	NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	Selenium#	m g/l	0.05	<0.00 l	<0.00 1	<0.00 l	< 0.001	<0.00 l	< 0.001	NA	NA	NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	Nickel#	m g/1	5.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	Cyanide#	m g/1	0.02	ND	ND	ND	ND	ND	ND	NA	NA	NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	Sulphides#	m g/1	5.0	0.34	0.32	0.21	0.32	0.36	0.19	0.36	0.19	0.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	Manganese#	m g/1	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NA	NA	NA
42 Bio-assay Test# 90% Survival of Fish after 96 hrs in 100% 93% 94% 91% 92% 93% 94% 91% 9	40	Vanadium#	m g/l	0.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	NA
$\frac{1}{42} \begin{bmatrix} \text{Bio-assay} \\ \text{Test}^{\#} \end{bmatrix} \begin{bmatrix} \text{Survival of} \\ \text{Fish after} \\ 96 \text{ hrs in} \\ 100\% \end{bmatrix} 93\% \begin{bmatrix} 94\% \\ 91\% \\ 92\% \\ 93\% \\ 93\% \\ 94\% \\ 94\% \\ 94\% \\ 94\% \\ 91\% \\ 91\% \\ 94\% \end{bmatrix} 94\%$	41	NO ₃ #	m g/1	20	0.48	0.47	1.22	0.45	0.41	1.03	1.22	0.41	0.68
	42			Survival of Fish after 96 hrs in	93%	94%	91%	92%	93%	94%	94%	91%	93%

CENTRE FOR ENVOTECH AND

43

α- emitters*

44 β- emitters*

Bq/l

Bq/l

3.7

37

0.12

BDL

0.13

0.32

0.80

0.34

0.10

0.52

0.20

0.41

0.14

0.46

0.8

0.52

0.1

0.32

0.25

0.41

SI. No	Parameter	Unit	Permissibl e Norms by CPCB	Oct	Nov	Dec	Jan	Feb	Mar	Max	Min	Avg	SD
1	pH Value		5.5 to 9.0	7.53	7.76	7.58	7.41	7.57	7.56	7.76	7.41	7.57	0.11
2	Temp	°C		29.1	28.3	26.9	26.3	27.2	28.6	29.1	26.3	27.73	1.09
3	Turbidity	NTU		11	12	10	8	12	6	12	6	9.83	2.40
4	Colour	Haze n		14	11	9	7	10	5	14	5	9.33	3.14
5	Alkalinity	mg/l		74	82	70	70	124	94	124	70	85.67	20.88
6	TDS	mg/l		215.8	242.4	215.5	229.6	498.3	262.4	498.3	215.5	277.3 3	109.6 9
7	TSS	mg/l	100	17.5	14.1	11.3	11.1	13.2	14.3	17.5	11.1	13.58	2.35
8	0&G	mg/l	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
9	BOD	mg/l	100	2.8	2.4	2.0	2.2	2.6	3.0	3	2	2.50	0.37
10	COD	mg/l	250	14	16	12	16	20	24	24	12	17.00	4.34
11	DO	mg/l		5.8	5.6	5.8	5.6	5.2	5.2	5.8	5.2	5.53	0.27
12	Chloride	mg/l		17.3	21.3	18.1	29.1	40.3	32.6	40.3	17.3	26.45	9.13
13	Sulphate	mg/l		6.9	8.5	7.2	9.1	21.2	11.2	21.2	6.9	10.68	5.38
14	Fluoride	mg/l	15.0	0.09	0.11	0.1	0.11	0.14	0.12	0.14	0.09	0.11	0.02
15	TH	mg/l		72	78	66	90	126	110	126	66	90.33	23.41
16	Calcium	mg/l		20.04	22.45	20.04	25.25	36.07	30.06	36.07	20.04	25.65	6.35
17	Magnesium	mg/l		5.35	5.35	3.9	6.56	8.75	8.51	8.75	3.9	6.40	1.92
18	Sodium	mg/l		23.1	26.2	21.3	25.7	38.2	30.2	38.2	21.3	27.45	6.07
19	Potassium	mg/l		6.8	7.7	6.2	7.3	17.5	10.6	17.5	6.2	9.35	4.27
20	TN#	mg/l		2.0	2.4	2.7	3.4	4.1	2.8	4.1	2	2.90	0.75
21	Diss PO ₄	mg/l		0.19	0.21	0.18	0.21	0.31	0.32	0.32	0.18	0.24	0.06
22	Iron	mg/l	3.0	0.28	0.29	0.25	0.29	0.33	0.41	0.41	0.25	0.31	0.06

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey. Read, Office: 1st Floor, N-5/305, IRC village, Navapalli, Bhubaneswar-751015, Odisha, India Mobile: 9861032826

Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344.

Page 13 of 24

ENTRE FOR ENVOTECH AND

MANAGEMENT CONSULTANCY PVT. LTD. An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization. Empanelled with PCCF(Wildlife) &CWLW,Odisha

CENIC	Enlisted in	CIDC	(established by the Planning Commission Govt. of India), NABL	
	MoEF&CC.	Govt.	of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.	

23	Copper	mg/l	3.0	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
24	Cadmium	mg/l	2.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
25	Lead	mg/l	2.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
26	Zinc	mg/l	15.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
27	TCr	mg/l	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
28	Cr ⁺⁶	mg/l	1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
29	C ₆ H ₅ OH	mg/l	5.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
30	RFC#	mg/l	1.0	ND									
31	TKN#	mg/l	100	1.02	1.12	1.08	1.19	2.04	1.21	2.04	1.02	1.28	0.38
32	Free NH3#	mg/l	5.0	ND									
33	Arsenic	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
34	Mercury#	mg/l	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
35	Selenium#	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
36	Nickel	mg/l	5.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
37	Cyanide	mg/l	0.02	ND									
38	Sulphides#	mg/l	5.0	0.15	0.16	0.14	0.21	0.29	0.19	0.29	0.14	0.19	0.06
39	Manganese	mg/l	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
40	Vanadium#	mg/l	0.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
41	NO3	mg/l	20	1.01	1.09	1.02	1.38	1.84	1.41	1.84	1.01	1.29	0.32
42	Bio-assay Test#		90% Survival of Fish after 96 hrs in 100% Effluent	93%	93%	94%	93%	91%	92%	0.94	0.91	0.93	0.01
43	a- emitters*	Bq/l	3.7	0.11	0.10	0.16	0.06	0.09	0.25	0.25	0.06	0.13	0.07
44	β- emitters*	Bq/l	37	0.69	0.40	BDL	0.21	0.54	0.28	0.69	0.21	0.42	0.19

N.B: ND-Not Detectable, MPN-Most Probable Number, NA- Not Applicable *Sample Tested By Health Physics Unit of BARC, OSCOM

#- Analyzed by Eko Pro Engineers, Gaziabad, Certificate No.-T-1418

Authorized Signatory Notes:

>

- The result given above related to the tested sample, as received The customer asked for the above test only.
- This Test Report shall not be reproduced wholly in part without prior written consent of the laboratory. The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless > specified otherwise.
- This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior > written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey. Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344. Laboratory At: Plot No. 800/1274, Johal, Pahal, Bhubaneswar-752101,

E-mail: cemclab@yahoo.in, Mobile: 9937631956, 8895177314

(b) Air:

The emission monitoring for the stacks attached to the dryers, shaft dryers of MSP, REEP&Boiler was taken up by M/s Centre for Envotech& Management Consultancy Pvt. Ltd., Bhubaneswar, a NABL Accredited & MoEF &CC Authorized Laboratory.

The range of values obtained for different parameters on half-yearly basis for are given below.

Report no. - CEMC/IREL/St1

Issued Date-16.05.2020

STACK EMISSION MONITORING TEST REPORT

Issued to	M/s. Indian Rare Earths Limited, Matikhala, Chatrapur, Ganjam, Odisha
Work Order No.	R-07/O/01560/07-S.C1208, Dated-11.03.2017
	ST-1 Boiler, ST-2- Main Dryer, ST-3- Shaft Dryer-Ilemenite, ST-4- Shaft
Locations	Dryer- Rutile, ST-5- Sillimanite Dryer, ST-6-Monazite Upgradation Section,
Locations	ST-7-Zircon Dryer, ST-8-MoPP Processing Plant-Stack-1, ST- MoPP
	Processing Plant-Stack-2
Nature of Sampling	Source Emission
Sampling By	Mr.S Pradhan and Mr. R. Das
Instrument Used	Stack monitoring kit, Flue Gas Analyzer
Sampling Period	April' 2019 to March' 2020
Parameter	Particulate Matter

FREQUE	NCY				I	OCATION	S			
Month	Week	ST-1	ST-2	ST-3	ST-4	ST-5	ST-6	ST-7	ST-8	ST-9
4	1 st	123.6	49.4	50.5	50.2	51.3	50.9	49.8	6.1	5.9
April	3rd	122.8	50.3	49.8	49.6	50.2	50.4	50.7	6.5	5.8
Mar	1 st	121.5	49.4	50.2	49.2	50.5	50.2	49.3	6.1	6.2
May	3rd	126.3	50.3	49.8	49.6	50.2	50.4	50.7	5.3	5.7
5. -	1st	119.6	49.4	50.1	49.2	50.7	49.8	49.3	6.1	5.6
June	3rd	118.4	51.3	50.6	48.7	51.2	48.9	50.2	5.9	6.1
	1 st	103.7	48.5	50.1	49.4	51.2	49.8	48.9	5.9	5.7
July	3rd	99.8	48.5	50.3	51.2	49.6	50.6	49.1	5.5	5.6
	1 st	118.5	50.2	49.6	48.9	50.7	51.1	47.9	6.1	5.8
August	3rd	110.9	51.6	50.2	44.8	51.6	50.3	42.6	6.2	5.8
c . 1	1 st	103.7	51.4	50.8	49.5	49.9	50.4	50.3	6.1	5.7
September	3rd	112.7	49.4	50.3	48.6	49.8	50.2	49.5	5.9	5.7
MAXIM	UM	126.3	51.6	50.8	51.2	51.6	51.1	50.7	6.5	6.2
MINIM	UM	99.8	48.5	49.6	44.8	49.6	48.9	42.6	5.3	5.6
AVERA	GE	115.13	49.98	50.19	49.08	50.58	50.25	49.03	5.98	5.80
STD DEVL	ATION	8.83	1.06	0.35	1.52	0.65	0.57	2.18	0.32	0.19

FREQUE	NCY	10.0	e:		6.	LOCATION	NS		2	22
Month	Week	ST-1	ST-2	ST-3	ST-4	ST-5	ST-6	ST-7	ST-8	ST-9
0.4.1	1st	109.4	49.7	48.9	50.1	50.3	49.5	48.6	5.9	6.0
October	3rd	116.5	51.3	49.6	49.2	48.7	50.1	49.4	6.2	5.9
N	1st	109.4	49.7	48.9	50.1	50.3	49.5	48.6	5.9	6.0
November	3rd	116.5	51.3	49.6	49.2	48.7	50.1	49.4	6.2	5.9
D	1st	123.5	51.3	50.1	49.4	48.7	48.9	50.2	6.7	6.4
December	3rd	116.5	51.3	49.6	49.2	48.7	50.1	49.4	6.2	5.9
January	1st	109.7	49.8	51.3	50.6	50.2	49.5	48.9	6.2	6.0

Environmental Studies (EIA & EMP),Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey. Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344.

CENTRE FOR ENVOTECH AND

MANAGEMENT CONSULTANCY PVT. LTD. An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odish Accredited by NABET, OCI for EIA Studies as 'A' Category Consultant Organization.

MC Empanelled with PCCF(Wildlife) & CWLW, Odisha Enlisted in CIDC (established by the Planning Commission Govt. of India), NABL MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986.

	3rd	102.9	51.4	49.6	51.1	49.5	50.8	51.2	5.9	5.8
February	1st	118.4	50.6	49.2	48.3	51.7	50.1	49.8	5.9	6.2
	3rd	112.6	49.7	50.3	48.5	50.1	49.6	50.6	6.3	6.1
March	1st	115.2	48.7	49.3	48.9	50.2	49.6	49.8	6.5	6.6
	3rd	101.8	50.3	48.6	49.2	50.1	49.2	50.4	6.3	6.1
MAXIM	UM	123.5	51.4	51.3	51.1	51.7	50.8	51.2	6.7	6.6
MINIM	UM	101.8	48.7	48.6	48.3	48.7	48.9	48.6	5.9	5.8
AVERA	GE	112.70	50.43	49.58	49.48	49.77	49.75	49.69	6.18	6.08
STD DEVL	ATION	6.36	0.90	0.73	0.83	0.93	0.51	0.81	0.26	0.23

OSPCB Permissible Limits- 150 mg/Nm³

gnatory Notes:

Seal of Laboratory

This Test Report shall not be reproduced wholly or in part without prior written consent of the laboratory.

The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.

This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey. Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India, Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344. Laboratory At: Plot No. 800/1274, Johal, Pahal, Bhubaneswar-752101, E-mail: cemclab@yahoo.in, Mobile: 9937631956, 8895177314 **Note:** During the period, number of measurements carried out was 144 for MSP, 48 for REEP& 24 for Boiler. The mean value of PM in all stacks & acid mist for REEP stack were lower than the stipulated limits i.e.150 mg/m³ for (for all stacks except REEP) & 50 mg/m³ for REEP stack.

Report no. - CEMC/IREL/St2

Issued Date-16.05.2020

STACK EMISSION MONITORING TEST REPORT

Issued to	M/s. Indian Rare Earths Limited, Matikhala, Chatrapur, Ganjam, Odisha
Work Order No.	R-07/O/01560/07-S.C1208, Dated-11.03.2017
Locations	ST-8-MoPP Processing Plant-Stack-1, ST- MoPP Processing Plant-Stack-2
Nature of Sampling	Source Emission
Sampling By	Mr.S Pradhan and Mr. R. Das
Instrument Used	Stack monitoring kit, Flue Gas Analyzer
Sampling Period	April' 2019 to March' 2020
Parameter	Acid Mist

FREQU	UENCY	LOCA	ATIONS
Month	Week	ST-8	ST-9
A mult	1 st	5.7	5.5
April	3rd	5.2	5.1
May	1 st	5.7	5.2
wiay	3rd	5.2	5.5
June	1 st	5.3	5.2
June	3rd	5.6	5.3
Tala	1 st	5.8	5.5
July	3rd	5.4	5.4
1	1 st	5.3	5.5
August	3rd	5.9	5.6
Santanihan	1 st	5.4	5.2
September	3rd	5.6	5.5
MAX	IMUM	5.9	5.6
MINI	MUM	5.2	5.1
AVE	RAGE	5.51	5.38
STD DE	VIATION	0.24	0.17

FREQU	JENCY	LOCATIONS		
Month	Week	ST-8	ST-9	
October	1 st	5.6	5.7	
October	3rd	5.9	5.8	
November	1 st	5.6	5.7	
November	3rd	5.9	5.8	
December	1 st	5.9	6.1	
December	3rd	5.9	5.8	
T	1 st	5.7	5.8	
January	3rd	5.9	5.8	

Environmental Studies (EIA & EMP),Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey. Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India,Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344.

Laboratory At: Plot No. 800/1274, Johal, Pahal, Bhubaneswar-752101,

E-mail: cemclab@yahoo.in, Mobile: 9937631956, 8895177314

ENTRE FOR ENVOTECH AND

MANAGEMENT CONSULTANCY PVT. LTD. An ISO 9001-2008 & OHSAS 18001:2007 Certified Company, Empanelled with OCCL, ORSAC and SPCB of Govt. of Odisha Accredited by NABET, QCI for EIA Studies as 'A' Category Consultant Organization.

5.91

0.19

Empanelled with PCCF(Wildlife) &CWLW,Odisha Enlisted in CIDC (established by the Planning Commission Govt. of India), NABL MoEF&CC, Govt. of India, Recognised Environment Laboratory under Environment (Protection) Act, 1986. 5.9 6.1 1 st February 6.1 6.2 3rd 6.1 6.2 1 st March 6.0 5.9 3rd 6.1 6.2 MAXIMUM 5.6 5.7 MINIMUM

OSPCB Permissible Limits- 50 mg/Nm³

5.88

0.17

NRO Authorized Signatory

Notes: P

AVERAGE STD DEVIATION

CEMC

This Test Report shall not be reproduced wholly or in part without prior written consent of the laboratory. 19 th

D The samples received shall be destroyed after two weeks from the date of issue of the Test Report unless specified otherwise.

P This Test Report shall not be used in any advertising media or as evidence in the court of Law without prior written consent of the laboratory.

Environmental Studies (EIA & EMP), Monitoring, Forest Diversion Planning, DPR, Wildlife Management Plan, Hazardous & Safety Studies, RS& GIS, Baseline Survey, Hydrological & Geological Studies, Socio-economic Studies, DGPS & ETS Survey. Regd. Office: 1st Floor, N-5/305, IRC village, Nayapalli, Bhubaneswar-751015, Odisha, India, Mobile: 9861032826 E-mail- cemc_consultancy@yahoo.co.in, cemc122@gmail.com, website: www.cemc.in, Landline: 0674-2360344.

PART - D

HAZARDOUS WASTES

[As specified under Hazardous wastes/ Management and Handling Rules, 1989& Amendment thereof]

Authorization No.Ind/IV/HW-13527 dated 17thDec 2019.

	Hazardous Wastes	Total Quantity			
		during the year	during the year		
		2018-19	2019-20		
(a) From Process :					
i.	Used oil, KL	1.140	1.2 KL		
ii.	Waste containing oil	Nil	1.0 Tonne		
ii.	Oily Sludge	Nil	Nil		
iii.	Spent resin	Nil	Nil		

(b).Used batteries, No.	38 44 *		
©From effluent treatment	Covered under radioactive wastes		
(d)Non-ferrous scrap(burnt	Nil NIL		
Cu wire), Kg			

*: 44 numbers were disposed under buy-back.

PART - E

SOLID WASTES

	Solid wastes	Total	Quantity		
		during the	during the year		
		year 2018-	2019-20		
		19			
(a)	From Process :				
i.	Reject Sand from mining, t	26,59,676	32,18,912		
ii.	Reject sand from MSP	1,10,594	1,04,736		
	(including HUS),t				
iii.	Boiler ash, t	7300	10905		
iv.	Rare Earth Extraction Plant,				
	Lead-Barium(Pb-Ba)	641.12	724		
	cake(radioactive), t				
	Iron-Carbonate cake(radioactive),t	223.34	371		
	Insoluble muck (radioactive),t	666.80	667		
	ETP Cake(radioactive),t	50.40	301		
	Deactivated sludge(radioactive),t	NIL	NIL		
	From pollution control facilities :				
i.	Neutralization sludge, m ³	Nil	NIL		
(c)	Quantity recycled or	Nil	NIL		
	reutilized within the				
unit					
(d)	Sold	Nil	NIL		
(e) Disposal Details as given in pa					

Note: HUS: Heavies Upgradation Section

<u> PART – F</u>

Please specify the characterizations (in terms of composition and quantum) of Hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

I. Characteristics of Hazardous Wastes & disposal practices :

a. Used oil:

The oil generated from vehicles/transformers/lubrication is stored (in Stores go-down).

b. Used batteries:

The used batteries, generated from vehicles & UPS systems, are stored under shed on impervious floor (in Stores go-down). 44 numbers of used batteries were disposed under buy-back policy to the manufacturer/authorized dealers during 2019-20.

II. Characteristics of solid wastes:

(i) Reject Sands: Average composition of tailings (process rejects), %

The tailings generated from mining and MSP operations had the following average composition during the year:

Constituents	Mining	MSP
		(HUS tails)
Ilmenite %	0.28	2.06
Garnet %	1.53	24.44
Monazite %	0.00	0.04
Rutile %	0.03	0.37
Zircon %	0.02	0.27
Sillimanite %	1.13	15.49
Quartz %	96.87	56.40
Others %	0.13	0.94

(HUS: Heavies Up gradation Section)

(iii) Solid Waste from Rare Extraction Plant (REEP):

The composition of the waste generated during the year had the following average composition:-

Rare Earth Extraction Plant,	Moisture%	ThO ₂ %	REO %	U ₃ O ₈ %
Lead-Barium(Pb-Ba) cake	32.23	10.8	13.5	0.12
Iron-Carbonate cake	73.38	1.37	1.77	0.19
Insoluble muck	32.88	3.53	5.52	0.06
ETP Cake	34.70	1.9	13.5	0.2

`*': BDL: Below detection level is less than 0.0001%.

(ii) Boiler Ash: Average composition, %

Constituent	% by weight(as such basis)				
calculated as	Collected on	Collected on	Collected on		
oxides	18.7.2019	15.11.19	11.02.2020		
SiO ₂	53.9	54.1	53.2		
Al ₂ O ₃	19.6	20.3	20.7		
Fe ₂ O ₃	7.9	6.7	7.2		
Moisture	2.3	1.95	2.1		
LOI	2.5	2.2	2.3		
CaO	10.8	10.9	11.1		
MgO	2.49	2.41	2.23		
MnO	< 0.001	< 0.001	< 0.001		
V_2O_5	< 0.001	< 0.001	< 0.001		
Cr ₂ O ₃	< 0.001	< 0.001	< 0.001		

Disposal practices :

- i. Tailings from mining operation were used for back filling of mined out areas.
- ii. MSP tailings are stockpiled in mined out area for future use.
- iii. Boiler ash was shifted to ash storage pond in mined out area.
- iv. All the radioactive wastes generated in REEP, are handled & stored in RCC trenches as per the Atomic Energy Regulatory Board (AERB) Authorization No. AERB/OPSD/IREL-O/61011/2020/398 dated 28.5.2020 and the return submitted to AERB as per Atomic Energy (Safe Disposal of Radioactive Wastes) Rules, 1987 and amendments thereon.

<u> PART - G</u>

Impact of the pollution control abatement measures taken on conservation of natural resources and on the cost of production.

- Pollution control equipments like cyclones, bag filters, scrubbers etc. have been provided in different plants for reducing atmospheric emissions.
- Stack heights are maintained as per OSPCB norms. Roof extractors and exhaust fans are provided to keep the work-zone air quality clean.
- > No untreated effluent was released into the environment.
- > Cost of pollution control has already been included in the project cost.
- The wastes generated at Rare Earth Extraction Plant, both solid & liquid wastes, are handled, disposed as per the requirement of Atomic Energy Regulatory Board(AERB) and the returns are submitted to AERB as per (Safe Disposal of Radioactive Wastes) Rules,1987 and amendments thereon.
- Radioactive solid wastes from REEP are presently stored in underground RCC trenches.
- The sodium nitrate solution, generated in Rare Extraction Plant (REEP), was stored in sodium nitrate storage pond (lined). Time to time, the solution was pumped to solar evaporation ponds(lined) to reduce the volume (due to evaporation) and to increase the sodium nitrate content in the solution. After drying, the Sodium Nitrate salts were stored in RCC Trenches along with radioactive solid wastes.
- The ambient air monitoring were carried out in five permanent locations around OSCOM at a frequency of 3 times in a month during 2019-20 and the monitoring results have indicated that the air quality even in close proximity of the plant areas are well within the stipulated levels for PM₁₀, SO₂, NO_x& CO.
- Monitoring of surface /ground waters around the plant has also shown that the various constituents are within the limits.

- During the year, 24.88 ha area was mined. Trees number 56000 (Casuarina Cashew, date palm, coconut saplings) were planted in mined out area (details are mentioned in page number 27).
- Efforts have been underway to conserve water. Artificial recharge structures have already been constructed as approved by Central Ground Water Board, Bhubaneswar for effective rainwater harvesting in Plant premises as well as in IREL Housing Colony area.

<u> PART - H</u>

Additional measures/investment proposed for environmental protection including abatement of pollution, prevention of pollution.

- The expenditures incurred for environmental & pollution control measures were Rs.279.84 lakhs both for OSCOM & Rare Earth Extraction Plant (REEP)respectively which includes effluent treatment, solid waste disposal, stack emission, ventilation systems, green belt development, floor tiling at MoPP for radiation control, health checkup (occupational & nearby village population), payment of Water Cess/Consent fees to Odisha State Pollution Control Board, Corporate Social Responsibility(CSR) activities and other miscellaneous expenditures for environmental protection.
- Budget allocation of Rs 30 Lakh has already been made for planting about 50,000 numbers of trees during the year 2019-20.

<u> PART – I</u>

Any other particulars for improving the quality of the environment.

- Environment Management Cell is existing and functioning. In addition, quarterly Environment Management Review meetings are being conducted to review and monitored the implementation of the recommendations made by various Regulatory Agencies and the progress of requirements as per ISO 14001:2015.
- Technical Services Department of OSCOM and Health Physics Unit of Bhaba Atomic Research Center (B.A.R.C) oversee the pollution control activities and carry out necessary monitoring of the waste arising as well as other environmental aspects. Proper evaluation of the monitoring data, early identifications of trends and appropriate remedial activities are being carried out to ensure environmental protection.

AFFORESTATION AND GREEN BELT DEVELOPMENT IN OSCOM

	Area	Area	planted in,	(Ha)	No.	of trees Pla	nted
YEAR	mined (Ha)	Mined out area	Others (Plant & colony)	Total	Mined out area	Others (Plant & colony)	Total
1007.00	4.0		5/	= 0	14.000	colony)	14.000
1987-88	4.0	7.0		7.0	14,000		14,000
1988-89	5.0	10.0		10.0	20,000		20,000
1989-90	8.0	7.5		7.5	15,000		15,000
1990-91	6.0	3.0		3.0	6,000		6,000
1991-92	12.0	8.5		8.5	16,500		16,500
1992-93	8.0	14.5		14.5	29,000		29,000
1993-94	6.67	9.88		9.88	25,000		25,000
1994-95	12.92	8.23	3.0	11.23	40,000	8,500	48,500
1995-96	16.94	8.5		8.5	42,000		42,000
1996-97	11.7	8.5	2.0	10.5	40,000	6,000	46,000
1997-98	15.5	8.5	3.0	11.5	40,000	5,000	45,000
1998-99	14.16	9.0	4.4	13.4	45,000	5,000	50,000
1999-2000	12.42	5.0		5.0	50,900		50,900
2000-2001	20.94	7.5	1.5	9.0	74,800	3,575	78,375
2001-2002	13.12	10.23		10.23	80,000	1,959	81,959
2002-2003	14.51	16.8		16.8	75,300		75,300
2003-2004	17.25	18.5	Avenue plantation	18.5	82,000	400	82,400
2004-2005	26.76	18.0	Avenue plantation	18.0	80,000	500	80,500
2005-2006	21.02	17.0	0.24	17.24	75,600	5,500	81,100
2006-2007	25.2	21.47	0.13	21.6	95,553	5,500	1,01,053
2007-2008	22.11	22.68		22.68	1,00,583	229	1,00,812
2008-2009	24.62	16.95	Avenue plantation	16.95	75,130	5,400	80,530
2009-2010	28.45	24.89		24.89	1,10,623		1,10,623
2010-2011	28.73	13.79		13.79	59,482		59,482
2011-2012	25.03	18.61		18.61	84,523		84,523
2012-2013	26.55	16.0	0.5	16.5	60,674	640	61,314
2013-2014	24.86	10		10	62,870		62,870
2014-2015	35.42	20	0.12	20.12	54,500	300	54,800
2015-2016	32.78	22	0.5	22.5	54,000	500	54,500
2016-2017	29.44	32	0.2	32.2	80,000	200	80,200
2017-2018	33.32	16	0.2	16.2	40600	200	40800
2018-2019	63.50	22.0	0.1	22.1	54900	200	55100
2019-2020	24.28	23	0.6	24.88	56000	600	56600